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For both two- and three-level systems, theoretical descriptions of two-color transient grating, transient dichroism,
and transient birefringence spectroscopies were presented. The two-dimensional line shapes of these pump-
probe spectra were found to be strongly dependent on the solvation dynamics. The two-dimensional contours
of the transient birefringence signal of a two-level system are not vertically directed in the short time region.
The inverse slope of the tangential line of the two-dimensional contours was found to be linearly proportional
to the solvation correlation function. The two-dimensional transient grating and dichroism spectra are shown
to directly provide quantitative information on the reorganization energy and spectral diffusion dynamics.
For a three-level system that is a model for an anharmonic oscillator, the peak separation observed in a
two-dimensional transient dichroism spectrum was found to be determined by both fluctuation amplitude of
the transition frequency and spectral bandwidth of the probe pulse. The transient dichroism and birefringence
contours of a three-level system were also found to be tilted in the short time region. We, in the present
paper, established a variety of relationships between two-dimensional pump-probe line shapes and solvation
correlation function.

I. Introduction

Transient grating spectroscopy has been used to study wave
packet (particle and hole) evolutions on the excited and ground
states.1-7 By injecting two simultaneously propagating laser
pulses with different wave vectors, vibrational coherence states,
hole and particle, are created on the ground and excited states,
respectively. A probe laser pulse delayed from the pump pulses
is used to create a third-order polarization in the optical sample.
Then, generated signal field intensity is measured in the case
of the transient grating experiment. For a two-electronic-level
system, the population relaxation and the electronic dephasing
process induced by fluctuating chromophore-solvent interaction
energy can therefore be studied with this TG method. Other
methods to study the time evolution of the same third-order
polarization are transient dichroism (TD) and transient bi-
refringence (TB) measurements. Instead of detecting signal field
intensity, an experimentalist can control the phase of the local
oscillator to measure either the imaginary or real parts of the
third-order polarization. These correspond to the TD and TB
experiments. All of these three different spectroscopies will be
referred to as pump-probe spectroscopies in general.

In the present paper, we will consider two-color (2-C) pump-
probe (PP) spectroscopy, where the pump and probe frequencies
are different from each other. In this case, the initial particle
and hole wave packets or doorway states, created by the two
field-matter interactions with the pump, are located at different
region of phase space of the window specified by the width
and frequency of the probe pulse. On the other hand, in the
case of the conventional 1-C PP, the phase space region of the
initial wave packet is identical with that of the window.
Therefore, 1-C PP measures how rapidly the initial wave packet

moves away from the initial phase space region in time so that
the 1-C TG signal decays monotonically. In contrast, due to
the difference between the doorway phase space and the window
phase space, the 2-C TG signal rises initially and reaches a
maximum value at the time when the propagating wave packet
passes through the window phase space, as experimentally
observed by Fleming and co-workers.8 Because of this additional
experimental controllability of the 2-C PP, it becomes possible
to explore a much wider region of the phase space spanned by
the coupled bath degrees of freedom.

The 2-C PP spectroscopies, because of their dependencies
on both pump and probe frequencies, are time- and frequency-
resolved two-dimensional (2-D) spectroscopies. The fifth-order
three-pulse scattering spectroscopy theoretically proposed by
Cho and Fleming9 was the early version of temporally re-
solved two-dimensional electronic spectroscopy. Jonas and co-
workers10 demonstrated that a 2-D electronic spectroscopy based
on a four-wave-mixing scheme is experimentally feasible and
showed that the diagonal elongation of the 2-D contours is a
signature of the inhomogeneous contribution to the line broad-
ening. Tokmakoff11 studied the 2-D line shapes for a few
limiting cases, either Lorentzian or Gaussian limits, and
particularly he showed that the 2-D spectral profiles along the
diagonal and anti-diagonal axes are strongly dependent on the
detailed line broadening mechanisms, though the 1-D line shape
is rather insensitive to them.

Recently, Hamm and co-workers12,13 used the 2-D IR PP
spectroscopy to investigate the role of solvation dynamics on
the 2-D contour line shapes of the amide I band from aqueous
N-methylacetamide (NMA) and trialanine solutions. They found
that the 2-D contours are not vertically directed in the short
time domain and become vertically directed after 4 ps. The
physics behind this phenomenon can be understood by noting
the fact that the chromophore-solvent dynamics is not a
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Markovian process. In other words, the memory about the initial
transition frequency lasts at least for 4 ps. Consequently, any
dynamical or chemical processes occurring in less than 4 ps
would experience inhomogeneous solvent environments. To
clarify the solvation effects on the 2-D PP spectra of NMA in
liquid water, we carried out molecular dynamics simulations in
combination with ab initio calculations and showed that the
librational and hindered translational motions of surrounding
water molecules are critical in determining amide I mode
frequency fluctuation amplitude and time scale of the memory
loss rate mentioned above.14 Furthermore, we proved that the
degree of slant of the 2-D contours is linearly proportional to
the solvation correlation function.14 This observation is par-
ticularly interesting because the early part of the solvation
correlation function can be accurately determined by examining
the time-evolution of 2-D TD contours. This is in contrast with
the photon echo peak shift measurement technique,15 though it
is one of the most effective ways to determine the slowly
decaying part of the solvation dynamics and to estimate the
magnitude of static inhomogeneity in glassy materials.

In this paper, we will present theoretical descriptions of six
different cases of pump-probe spectroscopies, i.e., (1) 2-C TG
of a 2-level system, (2) 2-C TD of a 2-level system, (3) 2-C
TB of a 2-level system, (4) 2-C TG of a 3-level system, (5)
2-C TD of a 3-level system, and (6) 2-C TB of a 3-level system.
In ref 14, we considered only the fifth case in an impulsive
pulse limit. Therefore, a finite pulse width effect on the 2-C
TD signal of a three-vibrational-level system was not taken into
account correctly, though it was for the first time found that
the inverse slope of 2D TD contours is directly related to the
solvation correlation function. Mukamel and co-workers studied
the second case, one-dimensional TD of a 2-level system in
the high-temperature limit.16 In section II, theoretical descrip-
tions of 2-C TG, TD, and TB signals of a two-level system
will be presented. Numerical calculation results for a model
system will be discussed in section III. In section IV, the theory
in section II will be extended to a three-vibrational-level system
and numerically calculated 2-C TG, TD, and TB spectra as a
function of the pump-probe delay time will be presented.
Finally, in section V, the main results will be summarized.

II. Theoretical

In the present section, we will first consider a two-level
system that is an excellent model for a dye molecule interacting
with optical (visible or UV) fields, whereas a three-level system
that is a model for a weakly anharmonic oscillator interacting
with multiple IR fields will be considered in section IV.
Depending on the experimental scheme, one can measure real
or imaginary parts of the third-order material polarization or
its intensity. The so-called transient grating measurement utilizes
two pulses with wave vectors ofk1 andk2. Then, the third (k3)
pulse which is delayed in time is injected, and the scattered
signal field intensity in the direction of-k1 + k2 + k3 is detected
(homodyne detection). The self-heterodyned pump-probe spec-
troscopy, on the other hand, uses a single pump pulse with wave
vector ofk1, and thek2 probe pulse delayed in time is injected
to create the corresponding third-order polarization and the
interference of the material signal field with the probe field is
measured. Therefore, the pump-probe signal in this case is
linearly proportional to the material polarization, particularly
the imaginary part of the polarization. If the phase of a local
oscillator field could further be controlled, one could measure
either the real or imaginary parts of the polarization separately,
which correspond to TB and TD, respectively. In any case, the

third-order nonlinear response function associated with the three
different experiments, i.e., TG, TD, and TB spectroscopies, are
all the same.

The frequencies of the pump and probe fields will be denoted
asωpu andωpr, respectively. The third-order polarization is given
as16

Here, the pulse envelopes were denoted asEm (m ) pu or pr).
Throughout this paper, we will consider the case when the pump
and probe pulses are well separated in time. Four response
function components,Rj (j ) 1∼4), will be discussed in detail
in the following subsection. The homodyne-detected TG signal
and the heterodyne-detected pump probe (HD-PP) signal are17

The phase of the local oscillator (LO),φ, can be controlled to
be zero orπ/2, and thenSHD-PP(ωpu, ωpr; τ; φ ) 0) and
SHD-PP(ωpu, ωpr; τ; φ ) π/2) correspond to the TD and the TB
signals, respectively.

Now, let us introduce a new integration variablet′ ) t + τ
- t3 - t2 and assume that the delay timeτ is sufficiently larger
than the pulse width. Then, we have

Later, eq 3 will be used to derive approximate expression
for P(3)(ks, t).

A. Short-Time Approximations. The general nonlinear
response function of a two-level system was presented before
and is given by a sum of the following four components (see
Figure 1 for the corresponding double-sided Feynman diagrams)
and their complex conjugates16

Figure 1. Six double-sided Feynman diagrams. The first two involves
time-evolution of the particle on the excited state, whereas the second
two (R3 andR4) describes hole dynamics on the ground-state potential
energy surface. The final two (R5 and R6) are associated with the
transition absorption from the first excited state|e〉 to the second excited
state|f〉.

P(3)(ks, t) )

( i
p)3∫0

∞
dt1 ∫0

∞
dt2 ∫0

∞
dt3 [R1 + R4]Epr(t - t3)E*pu(t + τ -

t3 - t2) Epu(t + τ - t3 - t2 - t1) exp(iωprt3 + iωput1) +

∫0

∞
dt1 ∫0

∞
dt2 ∫0

∞
dt3 [R2 + R3]Epr(t - t3)Epu(t + τ -

t3 - t2) E*pu(t + τ - t3 - t2 - t1) exp(iωprt3 - iωput1) (1)

STG(ωpu, ωpr; τ) ) ∫-∞

∞
dt |P(3)(ks, t)|2

SHD-PP(ωpu, ωpr; τ; φ) ) Im[eiφ∫-∞

∞
dt E*LO(kLO, t)P(3)(ks, t)]

(2)

P(3)(ks, t) ) ( i
p)3∫0

∞
dt1 ∫-∞

∞
dt′ ∫0

∞
dt3 Epr(t -

t3)E*pu(t′)Epu(t′ - t1){(R1 + R4) exp[iωprt3 + iωput1] +
(R2 + R3) exp[iωprt3 - iωput1]} (3)
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where the two auxiliary functions are defined as

Here, the line broadening function,g(t), is given as

where the linear correlation function of the fluctuating transition
frequency between|e〉 and |g〉 is

The above line broadening function,g(t), can be rewritten
as18

where the spectral densityF(ω) represents system-bath coupling
strengths and frequency distribution of the coupled bath modes.
â ) 1/kBT wherekB andT are the Boltzmann constant and the
temperature, respectively. Orientational average of the transition
dipole product was denoted as〈µeg

4〉 in eq 4.
Noting that the electronic coherence relaxation times during

the t1 and t3 period are typically very short and assuming that
t2 = τ and t1 + t2 = τ, one can use second-order truncated
Taylor expansion forms of variousg(t) functions in eqs 5 so
that we have

where

Here, the solvation correlation function was denoted asS(τ) and
the auxiliary functionQ(τ) is linearly proportional toS(τ). The
solvent reorganization energyλ is defined as18

In the high-temperature limit,H(τ) is linearly proportional to
the solvation correlation function as

Also, using a short-time approximation tog(t) with respect
to t1 and t3, we have

where the mean square fluctuation amplitude of the electronic
transition frequency is defined as

In the high-temperature limit,Ω2 = 2/pâ ∫ dω F(ω) ω ) 2λ/
p2â.

Thus, the four response function components in eq 4 can be
simplified as15,19,20

Because the first two response function components,R1 and
R2, describe the time-evolution of a particle on the excited state,
spectral diffusion contribution plays a crucial role, as manifest
by the term, exp{-2iQ(τ)t3}, whereas there are no such
contributions toR3 and R4. This does not mean that a hole
created on the ground state does not undergo a spectral diffusion,
as will be shown in the following subsection. In the literatures,
the first two contributions,R1 and R2, were referred to as
stimulated emission (SE) term and the last two contributions,
R3 andR4, were as ground-state bleaching (GB) term. Because
of the cross terms such as(H(τ)t1t3 in eqs 17, the memory on
the initially created particle or hole wave packets on the excited
or ground states, respectively, which can survive over the
population evolution period, was approximately taken into
account in eqs 17.

B. 2-Dimensional Polarization Function: Two-Level Sys-
tem. To take into account the finite pulse width effect on the
2-C PP signals, the pulse envelope functions are assumed to be
a Gaussian form asEpu(t) ) exp(-w2t2/2) and Epr(t) )
exp(-wj 2t2/2). Inserting Gaussian pulse envelope functions into
eq 3, replacingRj(t3, t2, t1) in eq 3 withRj(t3, τ, t1) in eqs 17,
and carrying out multiple integrals with the approximations

R1(t3, t2, t1) ) 〈µeg
4〉 exp(-iωegt1 - iωegt3) exp{-g*( t3) -

g(t1) - f+ (t3, t2, t1)}

R2(t3, t2, t1) ) 〈µeg
4〉 exp(iωegt1 - iωegt3) exp{-g*( t3) -

g*( t1) + f *+(t3, t2, t1)}

R3(t3, t2, t1) ) 〈µeg
4〉 exp(iωegt1 - iωegt3) exp{-g(t3) -

g*( t1) + f *-(t3, t2, t1)}

R4(t3, t2, t1) ) 〈µeg
4〉 exp(-iωegt1 - iωegt3) exp{-g(t3) -

g(t1) - f- (t3, t2, t1)} (4)

f+(t3, t2, t1) ) g*( t2) - g*( t2 + t3) - g(t1 + t2) +
g(t1 + t2 + t3)

f-(t3, t2, t1) ) g(t2) - g(t2 + t3) - g(t1 + t2) +
g(t1 + t2 + t3) (5)

g(t) ≡ ∫0

t
dτ1 ∫0

τ1 dτ2 êee(τ2) (6)

êee(τ2) ) 〈δωeg(τ2)δωeg(0)〉 (7)

g(t) ) -i
λ
p
t + ∫0

∞
dω F(ω) coth[pωâ

2 ](1 - cosωt) +

i∫0

∞
dω F(ω) sin ωt (8)

f+ = 2iQ(τ)t3 + H(τ)t1t3

f- = H(τ)t1t3 (9)

Q(τ) ≡ (S(τ) - λ
p) (10)

H(τ) ≡ ∫0

∞
dω F(ω) coth[pωâ

2 ]ω2 cosωτ (11)

S(τ) ≡ ∫0

∞
dω F(ω) ω cosωτ (12)

λ ≡ p∫0

∞
dω F(ω) ω (13)

H(τ) = 2
pâ∫0

∞
dω F(ω) ω cosωτ ) 2

pâ
S(τ) (14)

g(t1) ) g*( t1) = 1
2

Ω2t1
2 and g(t3) ) g*( t3) = 1

2
Ω2t3

2 (15)

Ω2 ≡ ∫ dω F(ω) ω2 coth
pωâ

2
(16)

R1(t3, τ, t1) ) exp(-iωegt1 - iωegt3) exp{-1
2

Ω2t1
2 -

1
2

Ω2t3
2 - 2iQ(τ)t3 - H(τ)t1t3}

R2(t3, τ, t1) ) exp(iωegt1 - iωegt3) exp{-1
2

Ω2t1
2 - 1

2
Ω2t3

2 -

2iQ(τ)t3 + H(τ)t1t3}
R3(t3, τ, t1) ) exp(iωegt1 - iωegt3) exp{-1

2
Ω2t1

2 - 1
2

Ω2t3
2 +

H(τ)t1t3}
R4(t3, τ, t1) ) exp(-iωegt1 - iωegt3) exp{-1

2
Ω2t1

2 -

1
2

Ω2t3
2 - H(τ)t1t3} (17)

Two-Color Pump-Probe Spectroscopies J. Phys. Chem. A, Vol. 107, No. 31, 20035905



stated above eq 9, we find that the total polarization is given
by a sum of two contributions,PSE

(3)(ks, t) andPGB
(3) (ks, t) that are

associated with the stimulated emission (R1 andR2) and ground-
state bleaching (R3 andR4) terms, respectively, i.e.

where

Here, the auxiliary functions in eqs 19 and 20 are defined as

The Dawson integral,F(x), in eqs 19 and 20 is defined as21

The spectral diffusion contributions to the particle and hole
dynamics on the excited and ground states, respectively, are
manifest in eqs 21; note that the time evolutions of centers and
variances of Gaussian-approximated particle and hole wave
packets are described by the twoτ-dependent functions,Y(τ)
andZ(τ) (see Appendix for a more detailed description on the
hole spectral diffusion and for comparison with previous
formulation by Mukamel and co-workers16,20). For a two-level
system, only the two contributions,PSE

(3)(ks, t) andPGB
(3) (ks, t), to

the PP polarization are to be considered, whereas for a three-
level system, there is an additional contribution,PTA

(3)(ks, t),
from the transient absorption (TA) process involving a transition
from the first excited state to the second excited state (see section
IV below).

Equations 18 with 19 and 20 constitute the principal results
of the present section. Because of theτ-dependent terms in eqs
19 and 20, the third-order PP polarization measurement provides
information on the spectral diffusion induced by the chromo-
phore-solvent dynamics.

Now, the homodyne-detected TG and heterodyne-detected
TD and TB signals can be calculated and found to be

A similar theoretical expression for the TD signal of a two-
level system in eq 23b was also obtained by Mukamel and co-
workers,16,20 though they used a different procedure. More
specifically, in the high-temperature limit, eq 23b becomes
identical to eq 13.32 in ref 16. Their results were later used by
others, and particularly, Zhang and Berg showed that the
solvation correlation function can be determined by fitting the
so-called single-wavelength transient hole burning signal.23 In
the following section, we will examine the above approximate
expressions by numerically calculating line shapes in the two-
dimensional frequency (ωpu andωpr) domain.

III. Two-Dimensional Line Shapes: Two-Electronic-Level
System

To numerically calculate various 2-D spectra, both the spectral
density,F(ω), and the solvent reorganization energy,λ, should
be determined first. In the present paper, we will assume that

Here, the cutoff frequencyωc is assumed to be 30 cm-1. If the
high-temperature approximation is invoked, the mean square
fluctuation amplitude,Ω2, of the electronic transition frequency
is approximately calculated to beΩ2 = 2λkBT ) 2.48 × 105

cm-2, which is close to the valueΩ2 ) 2.49× 105 cm-2 from
eq 16. The normalized solvation correlation function,S(τ)/S(0),
in eq 12 is plotted in Figure 2 (the spectral distribution function,
ω2F(ω), is also plotted in the inset of Figure 2). The auxiliary
function,H(τ), given in eq 14 is almost indistinguishable from
S(τ) except for a constant factor of 2/pâ. The solvation
correlation time defined as

P(3)(ks, t) ) PSE
(3)(ks, t) + PGB

(3) (ks, t) (18)

PSE
(3)(ks, t) ∝

-iπEpr(t)

(Ω2 + w2)1/2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)1/2

exp(-X2)

{exp(-Y2(τ)) + 2i

xπ
F(Y(τ))} (19)

PGB
(3) (ks, t) ∝

-iπEpr(t)

(Ω2 + w2)1/2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)1/2

exp(-X2)

{exp(-Z2(τ)) + 2i

xπ
F(Z(τ))} (20)

X ≡ ωpu - ωeg

x2[Ω2 + w2]

Y(τ) ≡
ωpr - ωeg - 2Q(τ) -

H(τ)

Ω2 + w2
(ωpu - ωeg)

x2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)

Z(τ) ≡
ωpr - ωeg -

H(τ)

Ω2 + w2
(ωpu - ωeg)

x2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)

(21)

F(x) ) e-x2∫0

x
du eu2

(22)

STG(ωpu, ωpr; τ) ∝ ∫-∞

∞
dt |P(3)(ks, t)|2 ∝

exp(-2X2)

(Ω2 + w2)(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2) {[exp(-Y2(τ)) +

exp(-Z2(τ))]2 + 4
π

[F(Y(τ)) + F(Z(τ))]2} (23a)

STD(ωpu, ωpr; τ) ∝ Im[∫-∞

∞
dt E*pr(kpr, t)PPP(ks, t; T)] ∝

-exp(-X2)

(Ω2 + w2)1/2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)1/2

{exp(-Y2(τ)) +

exp(-Z2(τ))} (23b)

STB(ωpu, ωpr; τ) ∝ Re[∫-∞

∞
dt E*pr(kpr, t)PPP(ks, t; T)] ∝

exp(-X2)

(Ω2 + w2)1/2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)1/2{ 2

xπ
F(Y(τ)) +

2

xπ
F(Z(τ))} (23c)

F(ω) ∝ 1
ω

exp(-ω/ωc)

λ ) 600 cm-1 (24)

τsol ≡ ∫0

∞
dτ S(τ)/S(0) (25)
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is estimated to be 262 fs in the case of the present model.
Finally, the pump pulse envelop is assumed to be identical to
that of the probe pulse, and the full-width at half-maximum
(fwhm) of each pulse is set to be 50 fs so thatw andwj are 250
cm-1.

In Figure 3, the three sets of 2-D spectra are plotted. The
five contours in the first column correspond to the 2-D TG
spectra at the delay time of 100, 200, 400, 800, and 1600 fs,
respectively. The contours in the second and third columns are
those of 2-D TD and TB spectra. Throughout the present paper,
the population relaxation contribution to the signals that can be
taken into account by multiplying an exponentially decaying
function to eqs 23 will be ignored not because it is not important
but because it does not change the 2-D line shapes.

First of all, the shapes of the TG and TD spectra atτ less
than 800 fs are observed to be tilted. Particularly, the TD
spectrum atτ ) 100 fs is diagonally elongated. The degree of
slant of the TG and TD contours decreases as the pump-probe
pulse delay time increases. The reason the 2-D TG and TD
spectra are significantly slant in the short time region is because
the memory on the phase space of the initially pumped wave
packet does not decay down to zero in such a short time. This
memory loss rate is determined by the function,H(τ), defined
in eq 11, or approximately the solvation correlation function,
S(τ).

Second, there appear two separated peaks in the 2-D TG
spectra atτ ) 800 and 1600 fs (see the bottom two figures in
the first column of Figure 3). The peak separation is estimated
to be 2λ ) 1200 cm-1. This can be easily understood by noting
that the TD and TG signals in the limit of large delay time are
given by a sum of two 2-D Gaussian functions centered at (ωpu

) ωeg, ωpr ) ωeg) and (ωpu ) ωeg, ωpr ) ωeg - 2λ) and its
square, respectively, (see eqs 23a and 23b), i.e.

where

Here, the transient birefringence (the real part of the polarization)
contribution to the TG signal becomes negligibly smaller than
the transient dichroism (the imaginary part of the polarization)
contribution so that in the long time limit the TG signal becomes
directly proportional to the square of the TD signal. On the basis
of the above observation about theτ-dependent peak separation
of the TD spectrum, one can experimentally measure the spectral
diffusion process dictated by the solvation correlation function,
S(τ). One complicating factor is that the two peaks are not
clearly frequency-resolved in the short time region so that this
method may not be useful for extracting information on the early
part of the solvation correlation function. This situation is very
similar to the photon echo peak shift (PEPS) measurement. As
was shown by Cho et al.,15 the PEPS is linearly proportional to
the solvation correlation function in the long time region, though
the initial decaying part of the PEPS is obscured by complicated
contributions intrinsically associated with the short-time non-
linear response function of the photon echo spectroscopy. To
overcome this difficulty, Skinner and co-workers theoretically
showed that the initial slope of the photon echo signal is linearly
proportional toS(τ).19,20Although it is likely to be complicated
due to the pulse overlap effects, it can be an alternative way to
extract quantitative information on the solvation correlation
function.

As can be seen in the five figures in the second column of
Figure 3, the center position of the 2-D TD spectrum changes
with respect to the pulse delay time and its location is at (ωpu

Figure 2. Normalized solvation correlation function,S(t)/S(0), obtained
from the spectral density,F(ω), defined in eq 24 is plotted in this figure.
The spectral distribution,ω2F(ω), is shown in the inset.

Figure 3. 2-D TG, TD, and TB contours of a two-level system. The
five figures in the first column are those of 2-D TG spectra. Those of
2-D TD and 2-D TB spectra are plotted in the second and third columns,
respectively. The pump-probe delay timeτ, is 100, 200, 400, 800, or
1600 fs.

STG(τ f ∞) ≈ exp(-2X2)

(Ω2 + w2)(Ω2 + wj 2)
{[exp(-Y2(∞)) +

exp(-Z2(∞))]2}

STD(τ f ∞) ≈ exp(-X2)

(Ω2 + w2)1/2(Ω2 + wj 2)1/2
{exp(-Y2(∞)) +

exp(-Z2(∞))} (26)

Y(∞) ≡ ωpr - ωeg + 2λ/p

x2(Ω2 + wj 2)

Z(∞) ≡ ωpr - ωeg

x2(Ω2 + wj 2)
(27)
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) ωegandωpr ) ωeg+ δω(τ)), where theτ-dependent frequency
shift δω(τ) is found to be

Therefore, it was shown that theτ-dependentδω(τ) obtained
from the centers of TD spectra can directly provide quantitative
information on the solvation correlation function,S(τ).

Now, let us consider the 2-D TB spectra shown in the third
column of Figure 3. As expected, each spectrum contains both
positive and negative peaks. Note that the two peaks at the
maximum and the minimum are separated from each other and
the magnitude of peak separation,∆(τ), increases as the pump-
probe pulse delay time increases (see the top right figure for
the definition of∆(τ)). Unlike the cases of TG and TD, the
approximate expression for the TB spectrum in eq 23c is not
just a sum of two 2-D Gaussian functions so that it is not
straightforward to obtain an expression for the relationship
between∆(τ) andS(τ). However, we found another interesting
feature exhibited by the 2-D TB spectra. In the region between
the two (positive and negative) peaks, the tangential line of the
2D contours (the dotted line in the top right panel of Figure 3)
is slant in the short time region. Let’s denote the inverse slope
of this linear line (the dotted line in Figure 3) asσ(τ). As the
pump-probe delay time increases,σ(τ) approaches zero. This
trend can be theoretically explained by using the approximate
expression for the 2-D TB spectrum. By considering the contour
of STB(ω*pu,ω*pr; τ) ) 0; the slope of the tangential line of this
specific contour in the region between the positive and negative
peaks can be estimated as follows. First of all, the middle
position between these two peaks has to be determined for this
purpose. Because the Dawson’s integral,F(x), reaches a
maximum value atx ) 0.92,21 |F(Y(τ))| and |F(Z(τ))| become
maximum when, forωpu ) ωeg

respectively. Therefore, the location of the midpoint between
the positive and negative peaks is at

To calculate the slope of the tangential line (see the dotted line
in the top right panel of Figure 3), consider the case when the
pump field frequency is slightly increased fromωeg by δ, the
location of the midpoint shifts to

Consequently, the inverse slope of the tangential line, denoted

asσ(τ), is found to be

This result suggests that one can directly obtain the solvation
correlation function by measuring the degree of slant of 2-D
TB contours as a function ofτ. In the long time domain, it will
be very difficult to measure an entire 2-D spectrum because of
weakness and noise of the signal. In this case, for a given delay
time τ, one can instead measure two 1-D TB spectra (as a
function of ωpr) at two different fixed pump frequencies such
asωpu ) ωeg andωpu ) ωeg + δ. Then, the first equality of eq
32 can be used to determineσ(τ) (or equallyS(τ)) value in the
long time domain.

Finally, a brief discussion on the static inhomogeneity
contribution to the 2-D TG, TD, and TB spectra is presented.
Although there is no truly static inhomogeneity in solution,
chromophores in a glassy material or a polymer matrix would
have inhomogeneous environments. In the case of the PEPS
measurement, the asymptotic value of the PEPS does not vanish
when there are sufficiently slow processes. Then, what are the
signatures of the static inhomogeneity in the 2-D TG, TD, and
TB spectra? If the static distribution is a Gaussian with standard
deviation of Σ (in cm-1), one should simply perform the
following replacements in eqs 23

where the units ofΩ andxH(τ) are transformed into cm-1. In
this case of a finite inhomogeneity system, the 2-D TG and TD
contours remain to be slant regardless of the pump-probe pulse
delay time. Furthermore, the 2-D TB contour would not be
vertically directed even in the long-time domain; note that the
contours shown in the bottom right panel of Figure 3 are
vertically directed atτ ) 1.6 ps because that is the case ofΣ )
0. Thus, if an asymptotic value of the experimentally measured
inverse slope,σ(τ f ∞), would approach to a finite value, it
could be a strong signature that there is a finite inhomogeneous
contribution to the line broadening. Moreover, the asymptotic
value,σ(τ f ∞), is directly related to the width of the static
inhomogeneity as

Using this relationship, one can quantitatively determineΣ.

IV. Two-Dimensional Line Shapes:
Three-Vibrational-Level System

In sections II and III, we only considered TG, TD, and TB
signals of a two-electronic-level system. Recently, an IR pump-
probe technique has been extensively used to study amide I
vibrational dynamics of various short polypeptides.24-30 In this
case, not only the first vibrationally excited state but also the
second excited state is involved in the pump-probe four-wave-
mixing process. For instance, the IR photon echo and IR pump-
probe experiments for anN-methylacetamide-D (NMAD)
dissolved in liquid D2O were carried out by Hochstrasser and
co-workers31 and Hamm and co-workers,13 respectively. Another
example of an application of the IR four-wave-mixing spec-
troscopies was to study hydrogen-bonding dynamics in liquid

σ(τ) )
ω*pr(δ) - ω*pr(0)

δ
)

H(τ)

Ω2 + w2
= ( 2

pâ) S(τ)

Ω2 + w2
(32)

Ω2 f Ω2 + Σ2

H(τ) f H(τ) + Σ2 (33)

σ(τ f ∞) ) Σ2

Ω2 + Σ 2 + w2
(34)

δω(τ) ) Q(τ) ) S(τ) - λ
p

(28)

ωpr - ωeg - 2Q(τ)

x2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)

) 0.92 and

ωpr - ωeg

x2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)

) 0.92 (29)

ω*pu(0) ) ωeg and ω*pr(0) )

0.92x2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2) + ωeg + Q(τ) (30)

ω*pu(δ) ) ωeg + δ and ω*pr(δ) )

0.92x2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2) + ωeg + Q(τ) +

H(τ)

Ω2 + w2
δ.

(31)
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water. The O-H(D) stretching vibration is anharmonic, and it
was observed that its frequency is strongly dependent on the
hydrogen-bond distance.32-38 Again, in this case, the molecular
system can be approximated to be a three-vibrational-level
system.

A. PP Polarization of a Three-Level System.To understand
the role of solvation (H-bond) dynamics in the nonlinear
molecular response to multiple IR fields, we recently carried
out molecular dynamics simulation studies in combination with
ab initio calculation methods. Particularly, the amide I vibration
of the NMA was studied in detail. In this case, one should at
least consider three vibrational levels denoted as|g〉, |e〉, and
|f〉, where|f〉 is the overtone (second excited) state. For such a
three-level system, we shall first present a generalized version
of the 2-D TG, TD, and TB signals by adding an additional
contribution, the so-called transient absorption term. As shown
in Figure 1, two more Feynman diagrams denoted asR5 andR6

should be included to calculate the total polarization. In ref 39,
a general expression for nonlinear response function of any
arbitrary multi-level system was presented.39,40The correspond-
ing two response function components associated withR5 and
R6 are found to be

The orientational average of the transition dipole product was
denoted as〈µg

2µfe
2〉 in eqs 35. In the case of a weakly

anharmonic oscillator,〈µeg
2µfe

2〉 = 2〈µeg
4〉. Unlike the case of

a two-level system, in addition to the linear correlation function
êee (τ2) defined in eq 7, it is necessary to determine three more
linear correlation functions such as

whereδωfg is the fluctuating part of the transition frequency

from |g〉 to |f〉 states. For a weakly anharmonic oscillator, if the
solute-solvent interaction causes fluctuation of the vibrational
force constant, one can assume that

Then, the three correlation functions in eqs 36 can be related to
êee (τ2) as

Using these relationships, we can rewrite the two transient
absorption components in eqs 35 as, in terms of the line
broadening functiong(t)

By using the same procedure and approximations discussed
in section II, the transient absorption contribution to the material
polarization,PTA

(3)(ks, t), is found to be

where

Note thatPTA
(3)(ks, t) differs from PSE

(3)(ks, t) by (i) the factor of
-2 and (ii) ωpr - ωeg f ωpr - ωfe.

Therefore, for a three-vibrational-level system, the total PP
polarization is given as a sum of three contributions

Because of the phase difference betweenPTA
(3)(ks, t) andPSE

(3)(ks,
t) + PGB

(3) (ks, t), the additional transient absorption contribution
interferes destructively in the region where the spectral overlap
is large. Using eq 42, we find that the 2-D TG, TD, and TB
signals are

R5(t3, t2, t1) ) -〈µeg
2µfe

2〉 exp{-iωfet3 +

iωegt1} exp{-∫t1

t1+t2 dτ1 ∫t1

τ1 dτ2 êee(τ1, τ2) -

∫t1+t2

t1+t2+t3 dτ1 ∫t1+t2

τ1 dτ2 êff(τ1, τ2) -

∫0

t1+t2+t3 dτ1 ∫0

τ1 dτ2 ê*ee(τ1, τ2) -

∫t1

t1+t2 dτ1 ∫t1+t2

t1+t2+t3 dτ2 ê*ef(τ1, τ2) +

∫t1

t1+t2 dτ1 ∫0

t1+t2+t3 dτ2 ê*ee(τ1, τ2) +

∫t1+t2

t1+t2+t3 dτ1∫0

t1+t2+t3 dτ2 ê*fe(τ1, τ2)}

R6(t3, t2, t1) ) - 〈µeg
2µfe

2〉 exp{-iωfet3 -

iωegt1} exp{- ∫0

t1+t2 dτ1 ∫0

τ1 dτ2 êee(τ1, τ2) -

∫t1+t2

t1+t2+t3 dτ1 ∫t1+t2

τ2 dτ2 êff(τ1, τ2) -

∫t1

t1+t2+t3 dτ1 ∫t1

τ1 dτ2 ê*ee(τ1, τ2) -

∫0

t1+t2 dτ1 ∫t1+t2

t1+t2+t3 dτ2 ê*ef(τ1, τ2) +

∫0

t1+t2 dτ1 ∫t1

t1+t2+t3 dτ2 ê*ee(τ1, τ2) +

∫t1+t2

t1+t2+t3 dτ1 ∫t1

t1+t2+t3 dτ2 ê*fe(τ1, τ2)} (35)

êff (τ2) ) 〈δωfg(τ2)δωfg(0)〉

êef (τ2) ) 〈δωeg(τ2)δωfg(0)〉

êfe (τ2) ) 〈δωfg(τ2)δωeg(0)〉 (36)

δωfg(t) = 2δωeg(t) (37)

êee(τ2) ) 1
4

êff (τ2) ) 1
2

êef (τ2) ) 1
2

êfe (τ2). (38)

R5(t3, t2, t1) ) - 〈µeg
2µfe

2〉 exp{-iωfet3 + iωegt1}
exp{-g(t3) - g*( t1) + g(t2) - g*( t1 + t2) - g(t2 + t3) +

g*( t1 + t2 + t3)}

R6(t3, t2, t1) ) - 〈µeg
2µfe

2〉 exp{-iωfet3 - iωegt1}
exp{-g(t3) - g(t1) - g*( t2) + g(t1 + t2) + g*( t2 + t3) -

g(t1 + t2 + t3)} (39)

PTA
(3)(ks, t) ∝

2iπEpr(t)

(Ω2 + w2)1/2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)1/2

exp(-X2)

{exp(-W2(τ)) + 2i

xπ
F(W(τ))} (40)

W(τ) ≡
ωpr - ωfe - 2Q(τ) -

H(τ)

Ω2 + w2
(ωpu - ωeg)

x2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)

(41)

P(3)(ks, t) ) PSE
(3)(ks, t) + PGB

(3) (ks, t) + PTA
(3)(ks, t) (42)
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B. Numerical Calculations.To study how the 2-D TG, TD,
and TB spectra change by the addition of the transient absorption
contribution, they were numerically calculated for a model three-
level system. First of all, the functional form of the spectral
density,F(ω), will be assumed to be the same with eq 24, but
the solvent reorganization energy,λ, is set to be 10 cm-1. Note
that the vibrational Stokes shift is typically tens or hundreds of
times smaller than the electronic Stokes shift. If the high-
temperature approximation were invoked, the mean square
fluctuation amplitude,Ω2, of the vibrational transition frequency
would be approximately calculated to beΩ2 = 2λkBT ) 4140
cm-2. The IR pump pulse envelop is assumed to be identical to
that of the IR probe pulse and the full-width at half-maximum
(fwhm) of each pulse is set to be 200 fs so thatw andwj are 63
cm-1.

Because of the nonzero vibrational anharmonicity, we assume
that the frequency differenceδωanh ) ωeg - ωfe is 30 cm-1.
Now, the three sets of calculated 2-D spectra for the TG, TD,
and TB signals are plotted in Figure 4. The delay time varies
as 200, 400, 800, 1200, and 1600 fs. The 2-D TG spectrum at
τ ) 200 fs is slightly slant, but that atτ ) 1600 fs is sym-
metric. Other than the tilted contours, the 2-D TG spectra are
featureless.

Next, let us consider the 2-D TD spectra shown in the middle
column of Figure 4. The transient absorption contribution to
the signal is positive and appears as the left peak in a 2-D TD
spectrum, whereas the negative peak appearing on the right
corresponds to the sum of stimulated emission and ground-state
bleaching contributions. The reason the two peaks are separated
from each other is because of the nonzero anharmonicity, i.e.,
ωeg - ωfe ) 30 cm-1, and of partial destructive interference
between them. However, the peak separation is found to be
about 180 cm-1, which is much larger than the anharmonicity
of 30 cm-1. Furthermore, the two peak positions, though they
are functions ofτ via Q(τ), along theωpr axis and the magnitude
of peak separation do not change much with respect toτ. Thus,
a question is immediately raised: what determines the peak
separation in the 2-D TD spectra? To provide a quantitative
answer to this question, it should be first noted that the two
contributions, 2 exp(-W2(τ)) and-exp(-Y2(τ)) - exp(-Z2(τ)),
at ωpu ) ωeg are Gaussian functions centered atωpr ) ωeg -

δωanh + 2Q(τ) andωpr ) ωeg + Q(τ), respectively. The maxi-
mum values of 2 exp(-W2(τ)) and exp(-Y2(τ)) + exp(-Z2(τ))
are in this case almost the same. Thus, the slice of the 2-D TD
spectrum atωpu ) ωeg can be recast in the form

where

The two (positive and negative) peak positions can be found
by solving the following nonlinear equation, obtained from
∂STD(ωpu ) ωeg, ωpr; τ)}/∂x ) 0, for x

One cannot analytically solve the above nonlinear equation to
find two roots. However, noting that, regardless ofτ, for x in

STG(ωpu, ωpr; τ) ∝

exp(-2X2)

(Ω2 + w2)(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2) {[exp(-Y2(τ)) +

exp(-Z2(τ)) - 2 exp(-W2(τ))]2 + 4
π

[F(Y(τ)) +

F(Z(τ)) - 2F(W(τ))]2}
STD(ωpu, ωpr; τ) ∝

exp(-X2)

(Ω2 + w2)1/2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)1/2

{2 exp(-W2(τ)) - exp(-Y2(τ)) - exp(-Z2(τ))}

STB(ωpu, ωpr; τ) ∝
exp(-X2)

(Ω2 + w2)1/2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)1/2

{ 2

xπ
F(Y(τ)) + 2

xπ
F(Z(τ)) - 4

xπ
F(W(τ))} (43)

Figure 4. 2-D TG, TD, and TB contours of a three-level system. The
five figures in the first column are those of 2-D TG spectra. Those of
2-D TD and 2-D TB spectra are plotted in the second and third columns,
respectively. The pump-probe delay timeτ, is 200, 400, 800, 1200,
or 1600 fs.

STD(ωpu ) ωeg, ωpr; τ) ∝ exp(-A(τ){x - x1(τ)}2) -

exp(-A(τ){x - x2(τ)}2) (44)

x ≡ ωpr - ωeg

x1(τ) ≡ 2Q(τ) - δωanh

x2(τ) ≡ Q(τ)

A(τ) ≡ 1

2(Ω2 - H2(τ)[Ω2 + w2]-1 + wj 2)
(45)

x - x1(τ)

x - x2(τ)
) exp{-A(τ)[2(x1(τ) - x2(τ))x - x1

2(τ) +

x2
2(τ)]} (46)
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the range from [x1(τ) + x2(τ)]/2 -(Ω2 + wj2)1/2 to [x1(τ) + x2(τ)]/
2 + (Ω2 + wj 2)1/2

one can approximately rewrite eq 46 as a quadratic equation of
(ωpr - ωeg). Thus, the magnitude of the peak separation, denoted
as∆ω(τ) in Figure 4, is approximately found to be

which, in this case, varies from 175 to 180 cm-1 asτ increases
from 200 to 1600 fs. Ignoring theτ-dependent terms in eq 48,
we further simplify it as∆ω = 2(Ω2 + wj 2)1/2, which is 180
cm-1. This is close to the numerical result. Thus, it is concluded
that, if the square root ofΩ2 + wj 2 is larger than the sum of
δωanh andλ/p, or in other words if the two peaks are strongly
overlapped, the magnitude of peak separation in a 2-D TD
spectrum of a three-level system is determined not by the
anharmonicity but by the root-mean-square fluctuation amplitude
and spectral bandwidth of the probe pulse, i.e.,∆ω(τ) = 2(Ω2

+ wj 2)1/2, as long asδωanh * 0. This is the case studied in the
present section, e.g., (Ω2 + wj 2)1/2 ) 90 cm-1 andδωanh + λ/p
) 40 cm-1.

Second, the degree of slant of the 2-D TD contours is an
interesting feature that should be studied in detail. Much like
the case of the 2-D TB spectrum of a two-level system, the
2-D TD contours of a three-level system studied in this section
are not vertically directed. Definingσ(τ) to be the inverse slope
of the tangential line of the contours at (ωpu ) ωeg andωpr )
ωeg + [x1(τ) + x2(τ)]/2), we find

Again, once the inverse slope,σ(τ), is experimentally measured
as a function ofτ, the solvation correlation function can be
obtained by using the above relationship, eq 49.

Now, consider 2-D TB spectra plotted in the third column of
Figure 4. Because of the interference between the transient
absorption polarization and the sum of stimulated emission and
ground-state bleaching polarizations, the 2-D TB spectrum
exhibits an up-down-up feature. The 2-D contours are again
slant when the pump-probe pulse delay time,τ, is not
sufficiently larger than the solvation correlation time,τsol.

Similar to the case of two-level systems, the static inhomo-
geneity effects on various PP spectra of three-level systems can
be understood by performing the same replacements summarized
in eq 33. Again, the asymptotic value of the inverse slope,σ(τ
f ∞), will give us information on the existence and magnitude
of static inhomogeneity.

V. Summary

In the present paper, theoretical descriptions of two-color TG,
TD, and TB spectroscopies were presented for both two- and
three-level systems. It was shown that the 2-D line shapes are
strongly dependent on the solvation dynamics. In particular, for
a two-level system, the 2-D TB contours appear not to be
vertically directed when the pump-probe pulse delay time is
not sufficiently larger than the solvation correlation time. Also,
it was shown that the delay-time-dependent 2-D TG and TD
spectra can provide quantitative information on the reorganiza-
tion energy and spectral diffusion dynamics. For a three-level
system, we obtained approximate expressions for the 2-D TG,
TD, and TB spectral profiles. The peak separation in a 2-D TD

spectrum was found to be determined by the fluctuation
amplitude of transition frequency and spectral bandwidth of the
probe pulse. Similar to the case of 2-D TB of a two-level system,
the 2-D TD contours of a three-level system were found to be
slant for a short time. The inverse slope of the tilted tangential
line was found to be linearly proportional to the solvation
correlation function. Overall, the approximate expressions for
the 2-D pump-probe signals presented in this paper will be of
use in the investigations of pure dephasing, static inhomogeneity,
and chromophore-solvent dynamics of two- and three-level
systems. One can use the same theory to describe IR four-wave-
mixing spectroscopies of any multi-level systems because the
corresponding response function can be decomposed into those
of three-level systems and the material polarization would be
expressed as a sum of them. Currently, we are applying the
present theory to the calculations of IR PP spectra of short
polypeptides in solution.
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Appendix: Spectral Diffusion of a Ground-State Hole

AlthoughR3 andR4 in eq 17 appear not to incorporate spectral
diffusion of ground-state bleach (“hole”) because of the absence
of Q(τ) terms in the short-time approximated expressions for
R3 andR4, the ground-state hole is also subject to the spectral
diffusion of which time-dependence is described by the function
H(τ); note that bothH(τ) andQ(τ) are linearly proportional to
S(τ) in the high-temperature limit. As can be seen in eq 20, the
τ-dependence ofPGB

(3) (ks, t), which is the polarization associ-
ated with the ground-state bleaching contribution, is determined
by the auxiliary functionZ(τ), i.e.

The variance of this hole wave packet as well as the center
frequency of this 2-D Gaussian function, i.e., exp(-Z2(τ)), both
depend on the pump-probe delay time,τ. To directly compare
our expression with eq 13.32 in ref 16, let us rewriteZ(τ) as

where

Here, it should be noted thatωeg, in the present paper, is the
frequency at the absorption maximum so that it differs from
that in ref 16, whereωeg denoted the 0-0 transition frequency.
If we replace ωeg in eqs 21 and 23b withωeg

0 - λ, the
similarity between our results and Mukamel’s expression for
the TD signal of a two-level system is manifest; note that eq
13.32 corresponds to the high-temperature limit of our eq 23b.

|A(τ)[2(x1(τ) - x2(τ))x]| , 1 (47)

∆ω(τ) = x4(Ω2 - H2(τ)[Ω2 + w2]-1 + wj 2) + Q2(τ) (48)

σ(τ) )
H(τ)

Ω2 + w2
= ( 2

pâ) S(τ)

Ω2 + w2
(49)

Z(τ) ≡
ωpr - ωeg -

H(τ)

Ω2 + w2
(ωpu - ωeg)

x2(Ω2 -
H2(τ)

Ω2 + w2
+ wj 2)

(21)

Z(τ) ≡ ωpr - ωg(τ)

x2R(τ)
(A1)

ωg(τ) ≡ ωeg +
H(τ)

Ω2 + w2
(ωpu - ωeg) (A2)

R(τ) ≡ Ω2 -
H2(τ)

Ω2 + w2
+ wj 2 (A3)
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From eq A2, it is clear that, only in the case whenωpu ) ωeg,
there is no spectral diffusion of a ground-state hole. Otherwise,
a hole would also spectrally shift in time and its dynamics is
dictated byH(τ).
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